Chapitre 4

Fonctions dérivables

Sommaire		
1	Dérivée en un point	
	1.1	Interprétation géométrique
	1.2	Dérivée à gauche, dérivée à droite
2	Propriétés des fonctions dérivables	
	2.1	Continuité
	2.2	Externum local d'une fonction
3	Ope	érations sur les fonctions dérivables
4	Théorèmes fondamentaux	
	4.1	Théorème de Rolle
	4.2	Théorème des accroissements finis
	4.3	Application du TAF : Variations d'une fonction
	4.4	Théorème des accroissements finis généralisé
	4.5	Application du TAF généralisé : La règle de l'Hôpital
	4.6	Inégalité des accroissements finis
	4.7	Application de l'inégalité des accroissements finis

La dérivée d'une fonction renseigne sur certaines particularités de son graphe. Elle permet d'identifier :

- Pour quelles valeurs de son domaine de définition la courbe croît ou décroît?
- Quels sont les extremums relatifs (locaux) ou absolue (globaux) de la fonction?

1 Dérivée en un point

Définition 1.1. Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in I$. On dit que f est dérivable au point x_0 si :

$$\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell \in \mathbb{R}$$

Dans ce cas cette limite ℓ est appelée la dérivée de f en x_0 et est noté $f'(x_0)$.

Remarque 1.1. Si on prend $h = x - x_0$ on aura

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

Exemple 17. Les fonctions affines : f(x) = ax + b

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{ax + b - (ax_0 + b)}{x - x_0} = a$$

1.1 Interprétation géométrique

Soient $M_0=(x_0,f(x_0))\in\mathcal{C}_f$ et $M=(x,f(x))\in\mathcal{C}_f$. La quantité, dite taux d'accroissement de f au voisinage de x_0

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0},$$

représente la pente de la droite (M_0M) . Si ce quotient a une position limite quand $x \longrightarrow x_0, x \ne x_0$, alors cette limite $f'(x_0)$ est appelée le coefficient directeur (ou la pente) de la tangente en $(x_0, f(x_0),$ de plus l'équation de la tangente est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Si le taux de variations T_{f,x_0} de f au voisinage de x_0 tend vers $\pm \infty$, on dit que f admet une dérivée infinie et on note $f'(x_0) = \pm \infty$.

La tangente à la courbe C_f , au point x_0 , est dite tangente verticale.

Exemple 18. La fonction $f(x) = x^2$ et dérivable en tout point $x \in \mathbb{R}$ et on a f'(x) = 2x. Ainsi l'équation de la tangente de la courbe représentative de f au point (1,1) est y = 1 + 2(x-1).

1.2 Dérivée à gauche, dérivée à droite

Définition 1.2. – Une fonction $f: I \longrightarrow \mathbb{R}$ est dérivable à droite en x_0 si

$$\lim_{x \to x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_d(x_0) \quad existe.$$

- Une fonction $f: I \longrightarrow \mathbb{R}$ est dérivable à gauche en x_0 si

$$\lim_{x \to x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) \quad existe.$$

Proposition 1.1. La fonction f est dérivable en x₀ si et seulement si f est dérivable à droite et à gauche de x_0 et on a $f'_q(x_0) = f'_d(x_0) = f'(x_0)$.

2 Propriétés des fonctions dérivables

2.1Continuité

Théorème 2.1. Si la fonction f est dérivable en un point x_0 alors f est continue en x_0 .

Démonstration. Exercice.

Remarque 2.1. La réciproque n'est pas toujours vraie. En effet la fonction $x \longrightarrow |x|$ est continue en 0, mais n'est pas dérivable en 0 car

$$\lim_{x \longrightarrow 0^+} \frac{|x|}{x} = 1 \quad et \quad \lim_{x \longrightarrow 0^-} \frac{|x|}{x} = -1.$$

2.2 Extemum local d'une fonction

Définition 2.1. Extremum, Extremum local

Soient $f \in \mathcal{F}(I, \mathbb{R})$ et $a \in \mathbb{R}$.

- Extremum global
 - On dit que f admet un maximum (globale) en a si et seulement si $\forall x \in I, f(x) \leq f(a)$. Si c'est le cas, on pose $f(a) = \max_{x \in I} f(x)$.
 - On dit que f admet un minimum (globale) en a si et seulement si $\forall x \in I, f(x) \geq f(a)$. Si c'est le cas, on pose $f(a) = \min_{x \in \mathcal{X}} f(x)$.
- Extremum local
 - On dit que f admet un maximum local en a si et seulement si $\exists V$, voisinage de a, tel que $\forall x \in V$, $f(x) \leq$
 - On dit que f admet un minimum local en a si et seulement si $\exists V$, voisinage de a, tel que $\forall x \in V$, $f(x) \geq 0$ f(a).
- On dit que f admet un extremum (respectivement un extremum local) si f admet un maximum (respectivement un maximum local) ou un minimum (respectivement un minimum local).

Proposition 2.1. Soit $f \in \mathcal{F}(I, \mathbb{R})$ et $x_0 \in I$. Si f admet un externum au point x_0 et si f est dérivable en ce point alors $f'(x_0) = 0$.

 $D\acute{e}monstration$. On suppose par exemple que x_0 est un maximum. Si f est dérivable en x_0 alors on a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) = f'_d(x_0)$$

or on a
$$f'_d(x_0) = \lim_{x \longrightarrow x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \le 0$$
 et on a
$$f'_g(x_0) = \lim_{x \longrightarrow x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0$$

et on a
$$f'_g(x_0) = \lim_{x \to x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0$$

ce qui donne

$$f'(x_0) = 0.$$

Remarque 2.2. L'existence d'un extremum (maximum ou minimum) local n'entraine pas forcément la dérivabilité de f en ce point. En effet la fonction f(x) = |x| admet un minimum en θ , alors que f n'est pas dérivable en θ .

Exemple 19. La fonction $f(x) = x^2$ est dérivable en tout point $x \in \mathbb{R}$ et f'(x) = 2x. f admet un minimum au point 0 ainsi f'(0) = 0.

3 Opérations sur les fonctions dérivables

On dit que f est dérivable sur l'intervalle I si elle est dérivable en tout point de I. On notera $\mathcal{D}(I,\mathbb{R})$ l'ensemble des fonctions dérivable en tout point de I. On a bien

$$\mathcal{D}(I,\mathbb{R})\subseteq\mathcal{C}(I,\mathbb{R})$$

Proposition 3.1. Soient $f, g \in \mathcal{D}(I, \mathbb{R})$. Alors $(f + g), (\alpha f)(\alpha \in \mathbb{R}), (f.g)$ et $(\frac{1}{f})(f \neq 0)$, sont des fonctions dérivables sur I et on a

1.
$$(f+g)'(x) = f'(x) + g'(x)$$
,

2.
$$(\alpha f)'(x) = \alpha f'(x)$$
,

3.
$$(fq)'(x) = f'(x)q(x) + f(x)q'(x)$$
,

4.
$$\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f^2(x)} \quad \Rightarrow \quad \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.$$

Démonstration.

1. On a

$$\lim_{x \to x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \frac{g(x) - g(x_0)}{x - x_0},$$

et donc

$$\lim_{x \to x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$
$$= f'(x_0) + g'(x_0)$$

ce qui montre la première formule.

2. On a

$$\lim_{x \to x_0} \frac{(\alpha f)(x) - (\alpha f)(x_0)}{x - x_0} = \alpha \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \alpha f'(x_0),$$

ce qui montre la deuxième formule.

3. On a

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \frac{f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))}{x - x_0}$$

$$= f(x)\frac{g(x) - g(x_0)}{x - x_0} + g(x_0)\frac{f(x) - f(x_0)}{x - x_0}$$

et donc

$$\lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \lim_{x \to x_0} f(x) \frac{g(x) - g(x_0)}{x - x_0} + g(x_0) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

et puisque f est continue en x_0 on a $\lim_{x \longrightarrow x_0} f(x) = f(x_0)$ et donc

$$\lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = f(x_0)g'(x_0) + g(x_0)f'(x_0)$$

ce qui montre la troisième formule.

4. On a,

$$\lim_{x \to x_0} \frac{\frac{1}{f(x)} - \frac{1}{f(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x_0) - f(x)}{(x - x_0)f(x_0)f(x)}$$
$$= -\frac{f'(x_0)}{(f(x_0))^2}.$$

Noter qu'on a utilisé encore le fait que f est continue en x_0 et donc $\lim_{x \to x_0} f(x) = f(x_0)$, ce qui montre la quatrième formule.

5. La formule

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

est un résultat des formules 3 et 4.

Théorème 3.1. Soient $f \in \mathcal{F}(I,\mathbb{R})$ et $g \in \mathcal{F}(J,\mathbb{R})$ deux fonctions et soit $x_0 \in I$ tel que $f(x_0) \in J$. Si f est dérivable en x_0 et g en $f(x_0)$ alors $g \circ f$ est dérivable en x_0 et on a

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

 $D\'{e}monstration$. On a f est dérivable en x_0 donc

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

et on a g est dérivable en $f(x_0)$ donc

$$\lim_{y \longrightarrow f(x_0)} \frac{g(y) - g(f(x_0))}{y - f(x_0)} = g'(f(x_0)).$$

D'autre part on a

$$\lim_{x \to x_0} \frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0}$$

puisque lorsque $x \longrightarrow x_0, f(x) \longrightarrow f(x_0)$ (f étant continue en x_0), on déduit que

$$\lim_{x \to x_0} \frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = f'(x_0)g'(f(x_0)),$$

ce qui montre la formule souhaitée.

Théorème 3.2. Soit f une fonction définie et continue sur I et strictement monotone sur I. Si f est dérivable en un point $x_0 \in I$ et $f'(x_0) \neq 0$. Alors f^{-1} est dérivable au point $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

 $D\'{e}monstration$. f est continue et strictement monotone sur I donc f est bijective et sa bijection réciproque f^{-1} est continue et strictement monotone aussi. On a

$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}}.$$

Lorsque $y \longrightarrow y_0$, $x \longrightarrow x_0$ (f^{-1} étant continue en y_0) et puisque f est dérivable en x_0 et $f'(x_0) \neq 0$, et il en résulte que

$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

4 Théorèmes fondamentaux

4.1 Théorème de Rolle

Théorème 4.1. Soit $f \in \mathcal{F}([a,b],\mathbb{R})$ une fonction continue sur [a,b] et dérivable sur [a,b] telle que f(a)=f(b). Alors, il existe au moins un point $c \in]a,b[$ tel que f'(c)=0.

 ${\it D\'{e}monstration.}\ f$ est continue sur [a,b] donc d'après le théorème de maximum f est bornée et atteint ses bornes donc

$$\exists c_1, c_2 \in [a, b]/ \ f(c_1) = m = \inf_{x \in [a, b]} f(x) \ \text{et} \ f(c_2) = M = \sup_{x \in [a, b]} f(x).$$

- Si m = M, le minimum coïncide avec le maximum et donc f est constante sur [a, b] et par suite pour tout $c \in]a, b[, f'(c) = 0$.
- Si $m \neq M$, la fonction f atteint son minimum en c_1 ,

- si m = f(a) = f(b), comme f atteint son maximum en c_2 et $m \neq M$, alors $c_2 \in]a, b[$ et $f'(c_2) = 0$ d'après la proposition 2.1.
- sinon, $c_1 \in]a, b[$ et $f'(c_1) = 0$ d'après la proposition 2.1.

4.2 Théorème des accroissements finis

Le théorème des accroissements finis est une généralisation du théorème de Rolle.

Théorème 4.2. Soit $f \in \mathcal{F}([a,b],\mathbb{R})$ une fonction continue sur [a,b] et dérivable sur]a,b[. Alors il existe au moins un point $c \in]a,b[$ tel que

$$f(b) - f(a) = (b - a)f'(c).$$

 $D\'{e}monstration$. On considère la fonction φ définie par

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

 φ est définie et continue sur [a,b] et dérivable sur]a,b[de plus $\varphi(a)=\varphi(b)=0,$ donc d'après le théorème de Rolle, il existe $c\in]a,b[$ tel que $\varphi'(c)=0.$ Or

$$\varphi'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$

 $\varphi'(c) = 0$ donc f(b) - f(a) = (b - a)f'(c).

Exemple 20. 1. Nous allons utiliser le théorème des accroissements finis pour montrer que

$$\frac{1}{3} < \ln(1,5) < \frac{1}{2}$$

On a $\ln(1,5) = \ln(\frac{3}{2}) = \ln(3) - \ln(2)$. Soit 2 < x < 3, la fonction \ln est continue sur [2,3], dérivable sur [2,3]. D'après le théorème des accroissements finis, il existe un $c \in]2,3[$ tel que

$$\frac{\ln(3) - \ln(2)}{3 - 2} = \ln'(c) = \frac{1}{c}$$

or $c \in]2,3[$ donc $\frac{1}{3} < \frac{1}{c} < \frac{1}{2}$ d'où le résultat souhaité.

2. Nous allons utiliser le théorème des accroissements finis pour calculer

$$\lim_{x \longrightarrow 0^+} x^2 \left(e^{\frac{1}{x^2}} - e^{\frac{1}{x}} \right).$$

Soit 0 < x < 1. La fonction e^x est continue sur $\left[\frac{1}{x}, \frac{1}{x^2}\right]$ et est dérivable sur $\left[\frac{1}{x}, \frac{1}{x^2}\right]$. D'après le théorème des accroissements finis, il existe $c(x) \in \left[\frac{1}{x}, \frac{1}{x^2}\right]$ tel que

$$e^{\frac{1}{x^2}} - e^{\frac{1}{x}} = e^{c(x)} \left(\frac{1}{x^2} - \frac{1}{x} \right) = \frac{(1-x)e^{c(x)}}{x^2}.$$

On aura alors

$$x^{2}\left(e^{\frac{1}{x^{2}}} - e^{\frac{1}{x}}\right) = (1 - x)e^{c(x)}.$$

Puisque $\frac{1}{x} < c(x) < \frac{1}{x^2}$, $\lim_{x \to 0^+} e^{c(x)} = +\infty$ et donc

$$\lim_{x \longrightarrow 0^+} x^2 \left(e^{\frac{1}{x^2}} - e^{\frac{1}{x}} \right) = +\infty.$$

4.3 Application du TAF: Variations d'une fonction

Proposition 4.1. (Variations d'une fonction)

Soit I un intervalle ouvert et $f \in \mathcal{F}(I,\mathbb{R})$ une fonction continue et dérivable sur I. Alors :

- 1. La fonction f est croissante sur I si et seulement si $\forall x \in I$, $f'(x) \geq 0$.
- 2. La fonction f est décroissante sur I si et seulement si $\forall x \in I$, $f'(x) \leq 0$.
- 3. La fonction f est constante sur I si et seulement si $\forall x \in I$, f'(x) = 0.

Démonstration.

1. Supposons que la fonction f est croissante et soit $x_0 \in I$. Pour tout x distinct de x_0 , on a

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0$$
 et donc $f'(x_0) \ge 0$.

Supposons que la dérivée de f est positive dans l'intervalle I. Soient $x, y \in I$ avec $x \leq y$. En appliquant le théorème des accroissements finis à f sur [x, y], il existe $x_0 \in]x, y[$ tel que

$$f'(x_0) = \frac{f(y) - f(x)}{y - x} \ge 0$$

et donc $f(y) \ge f(x)$. Ceci montre que f est croissante sur I.

2. Supposons que la fonction f est décroissante et soit $x_0 \in I$. Pour tout x distinct de x_0 , on a

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0$$
 et donc $f'(x_0) \le 0$.

Supposons que la dérivée de f est négative dans l'intervalle I. Soient $x, y \in I$ avec $x \le y$. En appliquant le théorème des accroissements finis à f sur [x, y], il existe $x_0 \in]x, y[$ tel que

$$f'(x_0) = \frac{f(y) - f(x)}{y - x} \le 0$$

et donc $f(y) \le f(x)$. Ceci montre que f est décroissante sur I.

3. Nous avons vu que si f est constante sur I alors f' est nulle sur I. Supposons maintenant que f' est nulle en tout point intérieur de I. Fixons $x \in I$ et soit $y \in I$. Si x < y, appliquant le théorème des accroissements finis à f sur [x,y], il existe $x_0 \in]x,y[$ tel que

$$f'(x_0) = \frac{f(y) - f(x)}{y - x} = 0$$

et donc f(y) = f(x). Si y < x, on montre de la même manière que f(x) = f(y).

Remarque 4.1. Soit $f \in \mathcal{F}(I, \mathbb{R})$ une fonction continue et dérivable sur I.

- 1. Si $\forall x \in I$, f'(x) > 0 alors la fonction f est strictement croissante sur I.
- 2. Si $\forall x \in I$, f'(x) < 0 alors la fonction f est strictement décroissante sur I.

4.4 Théorème des accroissements finis généralisé

Théorème 4.3. Soit $f, g \in \mathcal{F}([a,b], \mathbb{R})$ deux fonctions continues sur [a,b] et dérivables sur [a,b] telle que $g'(x) \neq 0 \quad \forall x \in]a,b[$. Alors il existe au moins un point $c \in]a,b[$ tel que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

 $D\acute{e}monstration$. On considère la fonction φ définie par

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

Cette fonction est continue sur [a,b] et dérivable sur]a,b[de plus $\varphi(a)=\varphi(b)=0$, donc d'après le théorème de Rolle, il existe $c\in]a,b[$ tel que $\varphi'(c)=0$. Or

$$\varphi'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}(g'(c)) = 0 \implies \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

d'où le résultat.

Exemple 21. 1. En utilisant le théorème des accroissements finis généralisé, nous allons calculer la limite

$$\lim_{x \to 0} \frac{\cos x^2 - 1}{x^4}.$$

En effet

$$\lim_{x \longrightarrow 0} \frac{\cos x^2 - 1}{x^4} = \lim_{x \longrightarrow 0} \frac{\cos x^2 - \cos 0^2}{x^4 - 0} = \lim_{x \longrightarrow 0} \frac{-2x \sin x^2}{4x^3} = -\frac{1}{2} \lim_{x \longrightarrow 0} \frac{\sin x^2}{x^2} = -\frac{1}{2}.$$

4.5 Application du TAF généralisé : La règle de l'Hôpital

Comme conséquence du théorème des accroissements finis généralisé, on obtient la règle de l'Hôpital qui s'énonce ainsi :

Proposition 4.2. (La règle de l'Hôpital en un point)

Soient f,g deux fonctions continues sur $[x_0 - \varepsilon, x_0 + \varepsilon]$, $\varepsilon > 0$ et dérivables sur $]x_0 - \varepsilon, x_0 + \varepsilon[/\{x_0\}]$ tel que pour tout $x \in]x_0 - \varepsilon, x_0 + \varepsilon[/\{x_0\}]$ $g'(x) \neq 0$. Si $\lim_{x \longrightarrow x_0} f(x) = \lim_{x \longrightarrow x_0} g(x) = 0$ ou $\lim_{x \longrightarrow x_0} f(x) = \lim_{x \longrightarrow x_0} g(x) = \infty$ alors

$$\lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)} = \ell \in \overline{\mathbb{R}} \Longrightarrow \lim_{x \longrightarrow x_0} \frac{f(x)}{g(x)} = \lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)} = \ell.$$

Démonstration. Pour tout $x \in]x_0 - \varepsilon, x_0 + \varepsilon[$, (sans perdre de généralité on peut supposer que $x > x_0$), f et g sont donc continues sur $[x_0, x]$ dérivables sur $]x_0, x[$ et d'après le théorème des accroissements finis généralisé il existe un $c(x) \in]x_0, x[$ tel que

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c(x))}{g'(c(x))},$$

puisque $c(x) \in]x_0, x[$ alors, lorsque $x \longrightarrow x_0, c(x) \longrightarrow x_0,$ il en résulte que

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f'(c(x))}{g'(c(x))} = \lim_{c(x) \to x_0} \frac{f'(c(x))}{g'(c(x))} = \ell. \square$$

Proposition 4.3. (Régle de l'Hôspital au point infini) Si f,g dérivables $sur]a,+\infty[$ $(rep.]-\infty,a[)$ (a>0) tel que $g'(x)\neq 0$. On suppose en outre que $\lim_{x\longrightarrow\pm\infty}f(x)=\lim_{x\longrightarrow\pm\infty}g(x)=0$ (ou ∞) alors

$$\lim_{x\longrightarrow\pm\infty}\frac{f'(x)}{g'(x)}=\ell\in\overline{\mathbb{R}}\Longrightarrow\lim_{x\longrightarrow\pm\infty}\frac{f(x)}{g(x)}=\lim_{x\longrightarrow\pm\infty}\frac{f'(x)}{g'(x)}=\ell.$$

Exemple 22. En utilisant la règle de l'Hôpital, nous allons calculer la limite

$$\lim_{x \to 1} \frac{x \ln x - (x - 1)}{(x - 1)^2}.$$

Posons $f(x) = x \ln x - (x - 1)$ et $g(x) = (x - 1)^2$. Ces deux fonctions satisfont les hypothèses de la proposition 4.2 et donc

$$\lim_{x \to 1} \frac{x \ln x - (x - 1)}{(x - 1)^2} = \lim_{x \to 1} \frac{\ln x}{2(x - 1)} = \frac{1}{2}.$$

4.6 Inégalité des accroissements finis

Corollaire 9. Soit $f \in \mathcal{F}([a,b],\mathbb{R})$ une fonction continue sur [a,b] et dérivable sur [a,b]. Si f' est bornée sur [a,b[, c'est-à-dire, qu'il existe M>0 tel que, pour tout $x \in]a,b[$, $|f'(x)| \leq M$, alors, pour tout $x,y \in [a,b]$,

$$|f(x) - f(y)| \le M|x - y|.$$

 $m{D\'emonstration}$. Soient $x,y\in[a,b]$ avec x< y. En appliquant le théorème des accroissements finis sur [x,y], il existe $c\in]x,y[$ tel que

$$f(x) - f(y) = f'(c)(x - y).$$

On déduit alors que

$$|f(x) - f(y)| = |f'(c)||x - y| \le M|x - y|.$$

Exemple 23. 1. Montrer que :

$$\forall x, y \in \mathbb{R}, \quad \left| \frac{x}{1+x^2} - \frac{y}{1+y^2} \right| \le |x-y|.$$

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(t) = \frac{t}{1 + t^2}.$$

Cette fonction est dérivable sur \mathbb{R} et on a, pour tout $t \in \mathbb{R}$,

$$f'(t) = \frac{1 + t^2 - 2t^2}{(1 + t^2)^2} = \frac{1 - t^2}{(1 + t^2)^2}.$$

74

On a, pour tout $t \in \mathbb{R}$

$$|1 - t^2| \le 1 + t^2 \le (1 + t^2)^2$$

et donc pour tout $t \in \mathbb{R}$,

$$|f'(t)| \le 1.$$

Ainsi d'après l'inégalité des accroissements finis, on a

$$\forall x, y \in \mathbb{R}, \quad \left| \frac{x}{1+x^2} - \frac{y}{1+y^2} \right| \le |x-y|.$$

2. Montrer que :

$$\forall x, y \in \mathbb{R}, \quad |\arctan x - \arctan y| \le |x - y|.$$

On considère la fonction $g: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$g(t) = \arctan t.$$

Cette fonction est dérivable sur \mathbb{R} et on a, pour tout $t \in \mathbb{R}$,

$$|g'(t)| = \frac{1}{(1+t^2)} \le 1.$$

Donc d'après l'inégalité des accroissements finis, on a

$$\forall x, y \in \mathbb{R}, \quad |\arctan x - \arctan y| \le |x - y|.$$

4.7 Application de l'inégalité des accroissements finis

Théorème 4.4. Soit f une fonction définie sur un intervalle [a,b] à valeurs dans [a,b]. On suppose que f continue sur [a,b] et dérivable sur [a,b]. Si de plus, il existe K>0 telle que

$$|f'(x)| \le K, \quad \forall x \in]a,b[$$

alors f est K-lipschitzienne sur l'intervalle [a,b].

Démonstration. Il suffit d'appliquer l'inégalité des accroissements finis avec M=K.